Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories.
The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an effective procedure (i.e. an algorithm) is capable of proving all truths about the arithmetic of natural numbers. For any such consistent formal system, there will always be statements about natural numbers that are true, but that are unprovable within the system.
The second incompleteness theorem, an extension of the first, shows that the system cannot demonstrate its own consistency.