The Binomial Theorem (x+y)n=j=0∑n(jn)xn−jyj where (kn)=k!(n−k)!n! is the binomial coefficient. Properties Basic Corollaries k=0∑n(kn)=(1+1)n=2n k=0∑n(−1)k(kn)=(−1+1)n=0 k=0∑n2k(kn)=3n Pascal's Identity (kn+1)=(k−1n)+(kn) Vandermonde's Identity (rm+n)=k=0∑r(r−jm)(kn) If we let m=n, we have (n2n)=k=0∑n(kn)2