Definition
Forward Continuous-Time Fourier Transform
X ( ω ) = F { x ( t ) } = ∫ − ∞ ∞ x ( t ) exp ( − jω t ) d t
Inverse Continuous-Time Fourier Transform as
x ( t ) = F − 1 { X ( ω ) } = 2 π 1 ∫ − ∞ ∞ X ( ω ) exp ( jω t ) d ω
Periodic Data
For a period function with Fourier Series x ( t ) = k = − ∞ ∑ ∞ a k exp ( jk ω 0 t ) , we have
X ( ω ) = 2 π k = − ∞ ∑ ∞ a k δ ( ω − k ω 0 )
Properties
If x ( t ) ↔ F X ( ω ) and y ( t ) ↔ F Y ( ω ) , then
x ( t ) ∗ y ( t ) ↔ F X ( ω ) Y ( ω )
and
x ( t ) y ( t ) ↔ F 2 π 1 X ( ω ) ∗ Y ( ω )
If x ( t ) ↔ F X ( ω ) , then
x ( t − t 0 ) = x ( t ) ∗ δ ( t − t 0 ) ↔ F exp ( − jω t 0 ) X ( ω )
If x ( t ) ↔ F X ( ω ) , then
exp ( j ω 0 t ) x ( t ) ↔ F X ( ω − ω 0 )
If x ( t ) ↔ F X ( ω ) , then
x ′ ( t ) = x ( t ) ∗ δ ′ ( t ) ↔ F jω X ( ω )
If x ( t ) ↔ F X ( ω ) , then
x ( α t ) ↔ F ∣ α ∣ 1 X ( α ω )
Particularly
x ( − t ) ↔ F X ( − ω )
Examples
Delta function
The Fourier transform of the Dirac delta function δ ( t − t 0 ) is given by
F { δ ( t − t 0 ) } = ∫ − ∞ ∞ δ ( t − t 0 ) exp ( − jω t ) d t = exp ( − jω t 0 )
That means, the Fourier transform of δ ( t − t 0 ) has a fixed norm 1 and t 0 only affects its phase.
As for the derivative of the Dirac delta function ,
F { δ ′ ( t − t 0 ) } = jω exp ( − jω t 0 )
using the property
[ d x d δ ( x − a ) ] f ( x ) = − δ ( x − a ) f ′ ( x )
Exponential function
The Fourier transform of exp ( j ω 0 t ) is
F { exp ( j ω 0 t ) } = ∫ − ∞ ∞ exp ( j ω 0 t ) exp ( − jω t ) d t = 2 π δ ( ω − ω 0 )
Square waves
Recalling the Fourier Series of square waves , for a square wave with valid length of λ , we have the Fourier Series λ sinc ( λkπ ) , therefore the Fourier Transform is
X ( ω ) = k = − ∞ ∑ ∞ 2 πλ sinc ( λkπ ) δ ( ω − k ω 0 ) , ω 0 = T 2 π
where T is the period of the original square wave
Dirac Comb
Recalling the Fourier Series of Dirac Comb x ( t ) = k = − ∞ ∑ ∞ δ ( t − k T ) is a k ≡ T 1 , therefore
X ( ω ) = k = − ∞ ∑ ∞ T 2 π δ ( ω − k ω 0 ) , ω 0 = T 2 π
Trigonometric functions
For x ( t ) = sin ( ω 0 t ) , we have
X ( ω ) = 2 π [ − 2 j 1 δ ( ω + ω 0 ) + 2 j 1 δ ( ω − ω 0 ) ] = − j π δ ( ω + ω 0 ) + j π δ ( ω − ω 0 )
And for x ( t ) = cos ( ω 0 t ) ,
X ( ω ) = 2 π [ 2 1 δ ( ω + ω 0 ) + 2 1 δ ( ω − ω 0 ) ] = π δ ( ω + ω 0 ) + π δ ( ω − ω 0 )
Rectangular Pulse
x ( t ) = { 1 , 0 , ∣ t ∣ < T 1 ∣ t ∣ > T 1 ⟹ X ( ω ) = ω 2 sin ω T 1
Unit step
For x ( t ) being unit step u ( t )
X ( ω ) = jω 1 + π δ ( ω )
Furthermore, If R e { a } > 0 , then
exp ( − a t ) u ( t ) ↔ F a + jω 1
t exp ( − a t ) u ( t ) ↔ F ( a + jω ) 2 1
( n − 1 )! t n − 1 exp ( − a t ) u ( t ) ↔ F ( a + jω ) n 1
Sampling Function
If x ( t ) = π t sin W t , then
X ( jω ) = { 1 , 0 , ∣ ω ∣ < W ∣ ω ∣ > W
Proportional Function
x ( t ) = t ⟹ X ( ω ) = j ⋅ 2 π ⋅ δ ′ ( ω )
Other Functions