Definition 
Forward Continuous-Time Fourier Transform
X ( ω ) = F { x ( t ) } = ∫ − ∞ ∞  x ( t ) exp ( − jω t ) d t Inverse Continuous-Time Fourier Transform as
x ( t ) = F − 1 { X ( ω ) } = 2 π 1  ∫ − ∞ ∞  X ( ω ) exp ( jω t ) d ω Periodic Data 
For a period function with Fourier Series  x ( t ) = k = − ∞ ∑ ∞  a k  exp ( jk ω 0  t ) 
X ( ω ) = 2 π k = − ∞ ∑ ∞  a k  δ ( ω − k ω 0  ) Properties 
If x ( t ) ↔ F X ( ω ) y ( t ) ↔ F Y ( ω )  
 
x ( t ) ∗ y ( t ) ↔ F X ( ω ) Y ( ω ) and
x ( t ) y ( t ) ↔ F 2 π 1  X ( ω ) ∗ Y ( ω ) 
If x ( t ) ↔ F X ( ω )  
 
x ( t − t 0  ) = x ( t ) ∗ δ ( t − t 0  ) ↔ F exp ( − jω t 0  ) X ( ω ) 
If x ( t ) ↔ F X ( ω )  
 
exp ( j ω 0  t ) x ( t ) ↔ F X ( ω − ω 0  ) 
If x ( t ) ↔ F X ( ω )  
 
x ′ ( t ) = x ( t ) ∗ δ ′ ( t ) ↔ F jω X ( ω ) 
If x ( t ) ↔ F X ( ω )  
 
x ( α t ) ↔ F ∣ α ∣ 1  X ( α ω  ) Particularly
x ( − t ) ↔ F X ( − ω ) Examples 
Delta function 
The Fourier transform of the Dirac delta function  δ ( t − t 0  ) 
F { δ ( t − t 0  ) } = ∫ − ∞ ∞  δ ( t − t 0  ) exp ( − jω t ) d t = exp ( − jω t 0  ) That means, the Fourier transform of δ ( t − t 0  ) 1 t 0  
As for the derivative of the Dirac delta function ,
F { δ ′ ( t − t 0  ) } = jω exp ( − jω t 0  ) using the property 
[ d x d  δ ( x − a ) ] f ( x ) = − δ ( x − a ) f ′ ( x ) Exponential function 
The Fourier transform of exp ( j ω 0  t ) 
F { exp ( j ω 0  t ) } = ∫ − ∞ ∞  exp ( j ω 0  t ) exp ( − jω t ) d t = 2 π δ ( ω − ω 0  ) Square waves 
Recalling the Fourier Series of square waves , for a square wave with valid length of λ λ sinc ( λkπ ) 
X ( ω ) = k = − ∞ ∑ ∞  2 πλ sinc ( λkπ ) δ ( ω − k ω 0  ) , ω 0  = T 2 π  where T 
Dirac Comb 
Recalling the Fourier Series of Dirac Comb  x ( t ) = k = − ∞ ∑ ∞  δ ( t − k T ) a k  ≡ T 1  
X ( ω ) = k = − ∞ ∑ ∞  T 2 π  δ ( ω − k ω 0  ) , ω 0  = T 2 π  Trigonometric functions 
For x ( t ) = sin ( ω 0  t ) 
X ( ω ) = 2 π [ − 2 j 1  δ ( ω + ω 0  ) + 2 j 1  δ ( ω − ω 0  ) ] = − j π  δ ( ω + ω 0  ) + j π  δ ( ω − ω 0  ) And for x ( t ) = cos ( ω 0  t ) 
X ( ω ) = 2 π [ 2 1  δ ( ω + ω 0  ) + 2 1  δ ( ω − ω 0  ) ] = π δ ( ω + ω 0  ) + π δ ( ω − ω 0  ) Rectangular Pulse 
x ( t ) = { 1 , 0 ,  ∣ t ∣ < T 1  ∣ t ∣ > T 1   ⟹ X ( ω ) = ω 2 sin ω T 1   Unit step 
For x ( t ) unit step  u ( t ) 
X ( ω ) = jω 1  + π δ ( ω ) Furthermore, If R e { a } > 0 
exp ( − a t ) u ( t ) ↔ F a + jω 1  t exp ( − a t ) u ( t ) ↔ F ( a + jω ) 2 1  ( n − 1 )! t n − 1  exp ( − a t ) u ( t ) ↔ F ( a + jω ) n 1   
Sampling Function 
If x ( t ) = π t sin W t  
X ( jω ) = { 1 , 0 ,  ∣ ω ∣ < W ∣ ω ∣ > W  Proportional Function 
x ( t ) = t ⟹ X ( ω ) = j ⋅ 2 π ⋅ δ ′ ( ω ) Other Functions