Let be a smooth oriented surface in with boundary . If a vector field
is defined and has continuous first order partial derivatives in a region containing , then
\iint_\Sigma (\nabla \times \boldsymbol F)\cdot \mathrm{d} \boldsymbol {\Sigma} = \int_{\delta \Sigma} \boldsymbol F\cdot \mathrm{d}(\boldsymbol \Gamma) $$where the '$\cdot$' operation stands for the [[Euclidean Space#v上的内积|inner product]] on $\mathbb{R}^3$ More explicitly, the equality says that\begin{aligned}
&\iint_\Sigma \left[ \left( \frac{ \partial F_z }{ \partial y } - \frac{ \partial F_y }{ \partial z } \right) \mathrm{d}y \mathrm{d}z + \left( \frac{ \partial F_x }{ \partial z } -\frac{ \partial F_z }{ \partial x } \right) \mathrm{d}z \mathrm{d}x + \left( \frac{ \partial F_y }{ \partial x } - \frac{ \partial F_x }{ \partial y } \right) \mathrm{d}x \mathrm{d}y \right] \
= &\int_{\delta \Sigma} F_x \mathrm{d}x + F_y \mathrm{d}y + F_z \mathrm{d}z
\end{aligned}
\oint_L \boldsymbol F\cdot \mathrm{d}\ell = 0
2. For all smooth curve $L$ in $\Omega$, the [[Curve Integral|curve integral]]\int_L \boldsymbol F\cdot \mathrm{d}\ell
is independent from the integrating path 3. There exists a function $u(x,y,z)$ (or *potential function*) such that\mathrm{d}u = P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z
u(A) = u(x,y,z) = \int_{A_0}^{A} \boldsymbol F \mathrm{d} \ell
where $A_0$ is the *reference point* 4. Every point in $\Sigma$ satisfies\frac{ \partial P }{ \partial y } = \frac{ \partial Q }{ \partial x } ,;\frac{ \partial Q }{ \partial z } = \frac{ \partial R }{ \partial y },;\frac{ \partial R }{ \partial x } = \frac{ \partial Q }{ \partial z }